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SOME THREE-DIMENSIONAL INCLUSION PROBLEMS IN ELASTICITY1

by

M. K. Kassir2 and G. C. S‘ih3

Abstract

The theory of potential functions is applied to solve a
number of three-dimensional problems involving sheet-like
inclusions embedded in elastic solids. Two types of inclu-
sions are considered; namely, that of a rigid elliptical disk
and a rigid sheet containing an elliptical hole. By varying
the ellipticity of the disk and hole, certain information on
the general character of the stresses around a plane inclu-
sion of arbitrary shape may be obtained. More precisely, if
reference is made to a suitable coordinate system, the func-
tional forms of the stresses in the close neighborhood of the
jnclusion border can be expressed independently of uncertain-
ties of both the inclusion geometry and of the applied
stresses or displacements. In general, the intensification
of the local stresses can be described by three parameters
which may be used to establish criteria for the failure of

the solid containing the inclusions.

T?his research was supported by the U.S. Navy under Contract

Nonr-610(06) with the Office of Naval Research in Washington,
D.G.

2Department of Civil Engineering, The City College, New York,
New York.

3Professor of Mechanics, Lehigh University, Bethlehem, Penn-
sylvania.



Introduction

During the past few decades, considerable attention has
been devoted to the solution of two- and three-dimensional
problems of stress concentrations around inclusions of a
variety of shapes. Since the literature on this subject is
exhaustive, only those works which are pertinent to the

present study will be cited.

The problem of a thin rigid circular disk embedded in an
infinite solid and subjected to a constant displacement nor-
mal to its plane was solved by Collins [1]. His results are
equivalent to the slow steady motion of a rigid disk in a
viscous fluid. 1In a recent paper, Keer [2] has considered a
similar problem in which the disk is displaced in its own
plane. The case of an infinite solid containing a rigid
sheet with a circular hole was also discussed in [2]. The
disturbance of an ellipsoidal inclusion in an otherwise uni-
form stress field was examined by Eshelby [3,4]. 1In the
1imit as one of the principal axes of the ellipsoid vanishes,
the solution to the problem of a flat elliptical disk may be

deduced from the work in [3,4].

For the purpose of assessing the strength degradation of
solids due to the presence of disk-shaped inclusions, it is
important to have a knowledge of the singular behavior of

the stresses near the sharp edges of the inclusions. To this
.



end, the present investigation is concerned primarily with
the determination of stress solutions of the following bound-

ary-value problems:

(1) A plane inclusion of elliptical shape in an other-

wise uniform tensile field.
(2) Elliptical disk displaced in its own plane.

(3) Displacement given to a rigid sheet with an ellip-

tical hole.

(4) Elliptically-shaped disk displaced out of its own

plane.

Referring to a system of Cartesian coordinates x,y,z,
the z-axis will be directed normal to the plane of disconti-

nuity which is bounded by the ellipse

where a and b are the major and minor semi-axes of the
ellipse, respectively. The center of the ellipse is located
at the origin of the coordinate system. The rectangular

and stress o, , ©

y* “Z X% XY

Say T GNE assumed to be continuously differentiable at

components of displacement Uys Uys U
all interior points of the solid and take definite values on
either side of the ellipse except that on the periphery of

the ellipse the stresses may become infinitely large. At
i



large distances from the origin, all the stresses and dis-
placements tend to zero. The problem is to find a suitable
solution of the Navier's equation of linear elasticity for

a homogeneous, isotropic body.

In the absence of body forces, the displacement vector

u is governed by the equation

where v is Poisson's ratio. The gradient and Laplacian
operators in three-dimensions are denoted by v and v?, re-
spectively. For problems exhibiting symmetry about the xy-
plane, which contains the surface of discontinuity, the dis-
placement vector u may be expressed in terms of a vector

potential ¢ with components ¢ , ¢

v [5]:

y? ¢, and a scalar potential

u = ¢ + zvy (3)

-

Hence, it is not difficult to verify that eq. (2) can be

satisfied by taking

32 34y - (4)

and

v2¢ = 0, v2y =0



The displacement vectors for problems possessing symmetry
with respect to the yz- and zx- planes may be obtained from
eqs. (3) and (4) by cyclic permutation of the variables

X,Y,z. For instance, the representation

u =o' + xvy' ,S—X‘L=—3_4v V. (5)

applies to problems with symmetry about the yz-plane. In
eq. (5), ¢' and y' satisfy the Laplace equation in three-

dimensions.

It should be mentioned that eq. (3) or eq. (5) is a
special representation of the more general solution of

Papkovitch [6]:

=
]

4(1-v) B - v (R . B+ B_) (6)

where R is the position vector. Denoting the components of

-~

B by Bx’ B B the Papkovitch functions are related to ¢

y’ z!
and ¥ in eq. (3) as

3B 3B 3B

0 0 0
z bl (3'4“)82'

|
|

and the two components Bx’ By are taken to be zero.

Once the displacements are known, the stress tensor o

follows directly from the stress-displacement relation

0=U[1?;

(v.u) I + vu + uv] (7)
- e ®

W



in which u is the shear modulus of the material and I 1is the

isotropic tensor.

Triaxial Tension Of Elliptical Disk

Consider an infinite solid with an elliptical disk lying
in the xy-plane. The z-axis pierces through the center of

the disk whose surfaces are subjected to the displacements

Eux

- [01-v(02+03)]x,

Euy = - [UZ-U(G3+GI)]y, Ey, = 0 (8)

for
z = 0 and x2/a2 + y?/b? <1

The Young's modulus is denoted by E. Now, the negative of
the displacements in eq. (8) correspond precisely to those

of a uniform state of stress in a solid with the disk absent,

o = 09, O = 05, O = 03, T = 1 = 1 =0 (9)

Superposition of the solutions of the two preceeding problems
will leave both faces of the disk free from displacement and
will yield the result to the problem of a thin rigid ellip-
tical disk in an otherwise uniform state of stress. Hence,
it suffices to solve the non-trivial second fundamental prob-
lTem owing to the boundary conditions given by eq. (8).

6=



Let f(x,y,z) be a harmonic function such that

= Bf = Af— = — i.f—
¢X = (3“‘4\’) ax ¢’y - (3'4\" 3y ’ ¢Z 0 ¢ = 32 (]0)

From eq. (3), the displacements become

= BF - aF = g BoF
Uy = 5x » Uy "5y » Yz © L e (1)

in which F is defined as
. af
F = (3-4v) f + z e

Upon substitution of eq. (11) into (7) gives the stress com-

ponents
o %4t *F w© 0%f  32F
XX _ 2v —_— t —7 2)’_)’_ = - 2v —r t —
2u 3z 3 X u 3z 3y
0 =f ®F 9 35
22 - . 2(2-v) > T T 2 = ’
21 3z 3z 2y IX3y
T 32f 32F
fE ™ 2(]'V) * ’
u dysz 3yoz
T 32f 32F
Xz _
7u = - 201-v) 5537 * T3z (12)

To determine the only unknown function f(x,y,z), ellip-
soidal coordinates £, n, z will be employed. The rectangular
coordinates x,y,z of any point will be expressed in terms of

the triply orthogonal system £, n, ¢ in the form [7]



(a2+g)(a2+n)(a?+z)

b2(b2-a2)y2 = (b2+g)(b2+n)(b?+z)

atbtz* = £nk (13)
where

w i EE 0y e =b® » g » w8k

In the plane z = 0, the inside of the ellipse x2/a? + y?2/b?

= 1 is given by ¢ = 0, and the outside by n = 0.

Making use of egs. (11) and (13), the boundary conditions,

eq. (8), become

(3-4v) %% = = % [01-u(02+03)]x, £ =0
(14)
(3-4v) H = - L [op-vlogtey)ly, & = 0

which implies that

g2F . B%fF . BTF -
ETRA + Eyy B o o= B constant, £ = 0

The solution of this problem can be obtained from the known
result for the gravitational potential at an external point

of a uniform elliptical plate [8], i.e.,

T . _ds
Flx,y,2) = 7‘ g 2+s bl R 1 LIS



where
Q(s) = s(a?+s)(b?+s)

For subsequent use, the following partial derivatives are

computed:

of 2A]
7% = a%kz [u - E(u)]x

of ZA] snu cnu

B_§=W[E<U) - klzu = k2 ].y (]6)

* dn u

The variable u is related to the ellipsoidal coordinate ¢

E = az(sn'z u-=1)
and
u
E(u) = [ dn?t dt
0

The quantities snu, cnu, ---, represent the Jacobian elliptic

functions and k, k' stand for
ak = (a2-b2)1/2 ak' = b

A glance at egs. (14) and (16) shows that the constants A] in
eq. (15) cannot be evaluated uniquely. For this reason, the

additional solution

u, = - Azx, u

G = Azy, iy ® 0 (17)

¥
==



will be introduced. The sum of eqs. (14) and (17) renders a
system of two algebraic equations for the two unknown con-

stants A, and A, which yields

1 2
ab? (1-v)(01+02) - 2voq
Ry == EGRT « I (o) (3-4%)
(18)
01-9, 3-4v a’
iy = g = FURE (1 + gz)E(k) - 2K(k)] A,

where K(k) and E(k) are the complete elliptical integrals of
the first and second kind associated with the modulus k,

respectively.

When the stress state

Gy = 2uA2, oyy = 2”“2’ Fgrg: ™ Txy = === =0

ijs added onto egs. (12), the contact stresses for g = 0 may

be ca]cu]ated4. The normal stresses

(5
£=0 0p-0q 3 (1-u)(01+02) - 2v03
= [£] =) = 7 [—moa-m)
(cyy)
£=0
(]-v)(01+02) - 2v03
Wl g (1-2v) . =) ] LES

4The higher order derivatives of the function f(x,y,z) can be
found in a paper by Kassir and Sih [9].

21 Bl



are found to be independent of the geometry of the elliptical

disk. For n = 0, 1.e., outside of the ellipse x*/a® + y2/b?

=1, o and o become singular on the edge of the

yy? zz
disk. Further, the stress exerted by the surrounding material

o
xx

on the disk in the z-direction vanishes if the material is in-

compressible. The shear stresses on the disk are given by

(Txy)£=0 =0
(1—v)(0]+02) - 2vo, _ i SO
(sz)g=0 = 2(1-v)b [ (T+v)(3-4v)E(K) 1x%a2].(1-x%/a“<-y</b )
(1-u)(cl+02) - 2voq _— R —
(TyZ)E=0 = 2(1-v)b [ (]+v)(3—4v)E(k) ]& /b2].(1-x*/a%-y“/b )

(20)

While both 1 are zero for n = 0, they are unbounded on

xz® 'yz
the boundary of the disk for & = 0 as shown in eq. (20).

In the limiting case of a = b, E = K w/2, the constants

A] and Az in eq. (18) take the forms
2 al (]-v)(b]+02) - 2vog o cz-v(c]+c3)
1 7 2w T+v)(3-4v) s N = 7T TZulT+x)

and eqs. (19) reduce to the results for a penny-shaped disk
given by Collins [1]. The shear stresses in eq. (20) may be

combined to yield

=131=

| —

ra|—



(1-v)(o,%0,) - 2vo r/a
0., =t A(1-v) L < 3] .
(1-v)(3-4v)n 1-(r/a

0 <r<a,z=2~0

where Bz ™ 0 for r > a, z = 0. The plus and minus signs refer

to the upper and lower faces of the disk, respectively.

Returning to the problem of finding the stress distribution
in an infinite solid containing a thin rigid disk under tri-
axial tension at infinity, it is necessary to express the con-
stants A] and AZ’ explicitly, in terms of the applied stresses

at infinity

Gxx = O-I [ o == 02 . a = 03

which are related to oy, 0y, 03 in eq. (18) as

Gy ® oy @ Zqu, czm = 0, * Zqu, o3 = 04 (21)

Inserting eq. (21) into eq. (18), it can be easily shown that
c]m, czm, U3m cannot be prescribed independently. This re-
striction can be illustrated by considering two special cases

as follows:

Case (i) o1 = 0y = 0

Let the stresses at infinity be

o B gy ®i= ZpAZ, oyy E @y = Zqu, 0,, = O3

-] P



Solving for A1 and A2 gives

b = ab?v o
HAY T TT+v) (3-4v)E(K) °3
(22)
= « = e = - v I "2 K k o
2UA2 = U-I 02 mz’ [2 k 2k ﬁ—k'}] 03

n
o

Case (i1) o,

Another possible solution can be obtained by specify-

ing

oo oo

- ZUA2’ S22

a 5oy =gy s ZuAZ, cyy = o,

It follows that

a3k2[v03m - (1-v)o]w]

2uRy = SIS YT(T=v)K(K) - (T-vaZ/bZ)E(KV]
(23)
w0 ¥ o o (1"'\))
ZUAZ = 02 = ? (01 +03 ) - 5 .
[(a2/b2)E(k) - K(k)I[vog™-(1-v)o;"]

(T-v)K(k) - (1-va?/b?)E(k)

Eqs. (22) and (23) indicate that the specification of the

applied stresses is severely restricteds. In the present method

5Such a restriction was also mentioned briefly by Eshelby [4]
in his survey article on the problem of the ellipsoidal inclu-
sion. -13-



of analysis of inclusion problems, it appears that only two
of the three principal stresses at infinity can be specified

independently.

Elliptical Disk Displaced Along Its Major Axis

Let an elliptical disk be embedded in an infinite solid
and be placed in the xy-plane. The disk is displaced along
its major axis by the amount u_, a constant. The necessary

boundary conditions are

(24)

The symmetry conditions suggest the following selection of

potential functions:

5 ah
¢X =, = (3‘4V)g + X ? ¢

I.._h |1_a_rl 'o=
vy~ Sy 8 “ap ¥ g (25)

where ¢;, ¢', ¢' are the rectangular components of the vector

y z
¢' in eq. (5). The functions g(x,y,z) and h(x,y,z) satisfy

the Laplace equations
vZg(x,¥,z) = 0 , v2h(x,y,z) = 0
Putting eq. (25) into (5), it is found that

s 3G _ 3G _ 3G
UX = —4(]"‘\))9 + 3’; » U - s U T 3z (26)



From eq. (7), the components of stress are obtained:

g 39 326 o 3g 226G
XX o yy _ _
2u -2(2-V)5x * 3%z » 2y 2vgx * ayZ °?
o g 392G
B2 . e 4
21 X 322 °
1 3 326G T 326G
Xy _ yz _
2y '2(1'“)3§ * 3xoy ® 2u  dya3z °®
- EXe| 226G
T - -2(1—u)§5 X532 (27)

The appropriate harmonic functions for this problem may

be chosen as

g(x,y,z) = B = — U ,
1 3 '6T§7 a
(28)
ds 2B

_ 2
(a2+s)vQ(s) a3k?

h(x,y,z) [u - E(u)lx

1

oW
]

>
rie— 8

Note that h(x,y,z), except for the multiplying constant,
represents the derivative of the gravitational potential at
an external point of an elliptical disk with respect to x.
For the purpose of evaluating the constants B] and 52’ the

displacement component u, is computed:

15



M| =

2x[nz(a2+g) (b?+g)] B,
5 - ab(e-n) (E-2) B

The condition that u, vanishes everywhere on the plane z = 0

yields

= ~aZ
82 a B1 (29)

By virtue of egs. (24), (26) and (29) for £ = 0, B1 is found:

u ak?

By = - 7o - T{3-4v)KZFTIR(K) - E(K) (20)

Knowing B, and BZ' the displacements and stresses at any
point of the solid can be calculated. On the plane z = 0,

the non-vanishing displacements are

28,
(ux) ; = o [1+(3-4v)k2]u - E(u)
n:
kx)?2 b2
ety [
2B, xy £
) 1
(“y)n=0 A = j;?7+s)(bz+a)

and the stresses are
1

8y (1-v)B, —_ 2
- - = -y 2 2
(rged = (1-x2/a2-y2/b?)
£=0
(32)
4p(]-2U)B1X ’ b2+¢
(Gzz)n=g T E-¢ - VElaZ+e

=



Both iy and o,, are singular on the border of the ellipse

x2/a2+y2/b%2 = 1, while Tyz T 0 everywhere on the plane z = 0.

When a = b, K = E = 7/2, eq. (30) simplifies to the form

2au0

By = 9 ey

It can be verified that for r > a, z = 0, £ » r2 - a?, and

u - sin'1 (%), eqs. (31) and (32) are in agreement with egs.

(23) and (24) in [2], respectively, except ford
8u(1-2v) Uy cos 6
(o,,) = —0" (2. . v > a (33)
z=0 m(7-8v) a (r/7a)/(r/a)? -1

where u, corresponds to a in [2].

Efq. (33) may also be derived directly from eq. (20) in [2]
if the order of integration and differentiation is properly
observed as follows:

(

1 3 +a f(t) dt 811u0
) = —(1-2v)— [lim | Ts £(t) & = —2—
z=0 2 ax z-»0 -a Vr?+(z+it)* n(7-8v)

o]
ZZ

Carrying out the integration gives

8u(1-2v)u_ 3 -1 8
rEey 3 Letn - ()

8u(1-2v)u0
= “w(7-8v)

d
(;)(Pz—az)_ /2 s o

Hence, the factor (1-v) in eq. (24) of [2] should be replaced
by cos 8.

o, & 7.



The foregoing method of solution may also be used to
solve the problem of an elliptical disk displaced in an
arbitrary direction by a constant amount, say §&,. If w de-
notes the angle between the x-axis and the direction along
which the disk is caused to move, then the boundary condi-

tions, eq. (24), may be generalized:

X 60 COS W, uy = 60 sin w, u, = 0, ¢ =0

=
1

The displacements are expressible in terms of four harmonic

functions as

3G 3G 3G

2 . ) “ - 0 o el
b, = 4(1 v)g1 ey uy 4(1-v)g, + TR =
in which
G0 = GI + GZ’ G] = X9, + h]. and G2 = ¥9, + h2

To satisfy the Laplace equations in three dimensions, gj(x,y,z)

and hj(x,y,z) are taken in the forms

T ds
g, (%s¥s2) = C; vd ® 1y 2
J J £ /'T_H S
hy(x,y,2) = Dyx [ a5 ;
g Ya‘+s /Q(s)

hz(x,y,z) = Dzy



Since the displacement u, vanishes for z = 0, the constants

Dj may be expressed in terms of Cj:

= .32 = _h2
0, a“Cy » Dy b“C,

The remaining unknowns, say Cj (j =1, 2), can be evaluated
from the boundary conditions yet to be satisfied and the solu-

tion of the problem is essentially complete.

Displacement Of Rigid Sheet With Elliptical Hole

Suppose that two semi-infinite solids are bonded perfectly
to a thin rigid sheet with an elliptical opening through which
the solids are connected. The sheet is allowed to move in the
plane z = 0 by a constant amount parallel to the x-axis. The
equivalent condition is to specify a constant shear stress

= ¢ for £¢ = 0. For this problem, the following conditions

Tzx )
must be satisfied:

(34)

The problem may be formulated in terms of a single function

p(x,y,z) which is related to ¢ and y in egs. (3) and (4) as

—4 - - .B—E = - f— iE
¢X (3 4\3)32! ¢y ¢Z Os ¥ 3 X

where

TG



'\?’2[]()(,)!,2) =0

The representation of the components of displacement as given
by Trefftz [5] is
= - o g'p‘ —g'az = ﬁE«— = a_z_E__
Ux (3-4v)37 + 2 3x2> Yy = 2 3xay* Yz T % 3xaz (35)
The stresses corresponding to eq. (35) are given by
o 3 ap 3%p o 3 ap aZp
xx = — - - —_— _\L!. = — - —_—
7h o L={3-29)z ¥ 2 55zl » g 5% [~2v3z + 2 g3zl »
o 3 ap 3Zp T 3 ap 3%p
2l = . N T X = el » " il
2y X [(1-2v)57 + 2 7771 0 3y [-(3-4v)37 + 22 aX3y
T 32 ap T 32p 3?2 ap
yz _ B ZX o i i
u axay [pt2z 571, m (3-8v)377 *+ 332 Lp+2z 57
(36)
On the plane z = 0, eq. (34) requires that
3p - =
52 ~ 0 m =0
(37)
a%p 32p 1

The first condition in eqgs.

taking

x2

[

(37) is satisfied automatically by

y2 ds

c
p(x,y,z) = 5 T

f
£

22
Lk 1]

bc+s S

<90




while the second condition yields

adk?k' 2t
2uC = TTRTRYFT(3-4v)K2=K " ZTE(K)

Once p(x,y,z) is determined, the displacements and stresses

throughout the solid can be computed from eqs. (35) and (36).

For z = 0, both uy and u, vanish and

(u,) = - 2603-89) (y y2pa0.y2/52)W/2 (4 ) =00
X g=0 G “n=0

The stresses on the plane z = 0 are

oyl ¥ - 4ull-29)C X (1.x2/a2-y2/b2)" 1/?
(38)
(1,,) = - 2uC X¥

Y% 1=0 (e-2)YQ(E)

g 2
gl = i =gt [ S o BRI
n=0 ab YQ(¢t) dn u
, U-E(u) _ ¥2 ’ b2+¢
a7k~ (e-z)(as+g) | e(a“+g)
and
(6.0 = (t,,) = 0y e, ) = 1
2 ¥z’ g zx’ g 0

Using L' Hospital's rule, the constant C for a circular
hole, a = b, may be recovered:
2&3r0
= Tul(7-8v)
Y



Aside from a couple of misprints, (u,) s 7@ Z) , and
X e=0 Y2 1=0

(sz) check with those given by eqs. (41) and (42) in [2]

n=0

1f Tg is identified with 0o The expression for

(GZZ) = = 8(]-2v] r/a TO coSs 6

z=0 n(7-8v) YT-(r/a)?

fails to agree with that of [2] for the same reason as men-

tioned earlier in footnote (6).

Axial Displacement Of Elliptical Disk

If a thin rigid disk of elliptical shape is given a con-

stant displacement W, normal to its plane, then

fi, & uy = 0, 2 = 03 Uy SWes & = 0 (39)
which suggests that
6. = ¢, =0, ¢_ = -(3-4v)q, v = g (40)

z

Inserting eq. (40) into (3), the result is

U % % uy z 3y u, (3-4v)q + z = (41)

From eq. (7), it is further found that

Oy x 3q 32q o aq 22q
2u =“2U§E 2T 2y '2“53 T & ay2?
o 3q 32q 1 32q
S w w s Ve EY. =

2u 2(1 “)az vZ 37D 7 . IX3y

D9



2 2
T 9q 94q Tox aq 94q

z _ e CEE e AR N i
?f— = -(1—2v)ay + Z guses Iy (W:=20)5r + 2 5353 (42)

The only unknown function q(x,y,z) satisfying

v2q(x,y,z) = 0

can be taken in the form

q(x,y,z) =D | is . - el (43)
e /Q(s) a
Eqs. (39), (41) and (43) may be combined to give
aw

D = - 71333 )K(K)

Calculating for the derivatives of q(x,y,z) with respect to

RaWady Ty

3¢ aw X ’a(b2+£)
X - (3-8v)(E-n)(E-c)K(K) ° aZte  *

ax

36 aw,y fa(a2+a)
3y~ (3-4v)(e-n)(e-o)K(k) = V7b%e  °
Y wy (ng)!/?

/{aZ+e) (b?+g)

az  (3-4v)b (&-n)(e-c)K(k)

and so on ---, the non-trivial displacements and stresses for
z = 0 are
Yo
(uz)€=0 = Vg (uz)n=0 - K(k) [u]n=0

B e



and

. 4u(1-\‘)w 172

(el =@ 9 + (1-x2/a2-y2/b2)” /%, ¢ = 0

2z’ ¢ (3-4v)b K(K) o LT
(% 50

227 2 up® 20 (1-2v)w, (aZ+2)(b2+E)

= - _r'] =

(ty2) s (3-4v)c /2 (g-0)k K(K)|[ /T@aZFE)[-(B7%c) 1)’

s L

(44)

in which -(b2+z) is a positive definite quantity. The nota-
tions z=0% and z=0" refer to the upper and lower faces of the

disk, respectively.

The force exerted by the elastic solid to oppose the
displacement of the elliptical disk may be found from the
integral

= IZI [(°Zz)z=o+ - (czz)z=0_] dxdy (45)
The region § is bounded by the ellipse x?/a?+y?/b* = 1. Sub-

stituting eq. (44) into (45), F, is obtained:

Su(]-v)wo
z -~ 13-4v)b K(k)

sz (1-x2/a2-y2/b2)" '/ 2dxdy

16nu(1—v)aw0
(3-4v)K(k)

(46)

In the limit as a - b, eq. (46) reduces to Collin's solution

[1] for a circular disk.

«Plw

0



Three-Dimensional Stresses Near Inclusion Border

For the purpose of establishing possible failure criteria,
the stresses near the border of a plate-like inclusion will
be investigated. It is convenient to introduce a rectangular
cartesian coordinate system n,t,z such that the origin of this
system traverses the periphery of the inclusion. The zn-,
nt-, and tz- planes are known, respectively, as the normal,
rectifying and osculating planes to the curve which will be

taken in the form of an ellipse.

In the immediate vicinity of the inclusion border, the
ellipsoidal coordinates £, n, ¢ can be expressed in terms of
the polar coordinates r, & defined in the nz-plane, where r
is the radial distance measured from the edge of the inclusion
and o is the angle between r and the n-axis. The required re-

lationships of £, n, ¢ to r, ® are?

2abr

8
g = cos?
(a2sin?¢ + bzcos%)]f2 g

2 :
s abE 77 sin’ % (47)

(a2sin?¢ + b2cos?¢)

- (a2sin2¢ + b2?cos?¢)

U
I

’p detailed derivation of eq. (47) is given in [9].
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In eq. (47), r is assumed to be small in comparison with a
(or b) and ¢ is the angle appearing in the parametric equations

of the ellipse, i.e.,

X = a cos ¢, ¥y = b sin ¢

Since the derivation of the local stresses is similar to those
given by Kassir and Sih [9] for the three-dimensional crack
problem, the detail calculations will be omitted here. By
means of eq. (47) and the appropriate equations for finding

the stresses, the following results are obtained:

k] 9 G 38
g # ¥ = Elds = (3-2v - sin — sin —)
r 2 2 2
k, 6 6 36
+ —£ sin — (2v + cos — cos —) + 0(1)
r 4 2 2
k] 8 8 38
B ® = == EOS = (1-2v - sin — sin —)
V2r 2 2 2
k2 9 8 36
+ —= sin — (2-2v - cos — cos —) + 0(1)
V2r 2 2 2
k1 8 k2 6
gt = + — , 2v cos —+ —= 2v sin —+ 0(1)
/2r 2 2r 2



k 8 0 38

Tois B + Lk sin — (2-2v + cos — cos —)

/2r 2 2 2

k2 ) ] 38

+ —£ cos — (1-2v + sin — sin —) + 0(1)

2r 2 2 2

k3 8 )
T = —= sin — * 0(1 (48)
L2 /or 2

Although these stresses were derived from the solution of an
elliptically-shaped inclusion, they are in general valid for

a plane inclusion of arbitrary shape. Moreover, the inclusion-
border stress fields for the four preceding boundary-value

problems are included in eq. (48) as special cases.

Now, it is significant to observe that eq. (48) is com-
posed of the linear sum of three distinct stress fields each
of which can be associated with a different mode of deformation.
Referring to Figs. 1(a) through 1(c), the intensity of the local
stresses at the point P caused by the movements of the inclusion
in the n-, z-, and t- directions are governed, respectively, by
the three parameters k1, k2 and k3. These three modes of dis-
placements are necessary and sufficient to describe all the
possible displacements of the inclusion. It will be shown sub-
sequently that the parameters kj (j =1, 2, 3) depend only upon
the prescribed stresses or displacements and the inclusion ge-

ometry. The singular behavior of the inclusion-border stresses
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is the same as that for a sharp crack. In other words, the
1//r type of stress singularity is preserved. However, un-
like the crack problem, the angular distribution of the

stresses is a function of the Poisson's ratio of the elastic

solid.

A close examination of the stress expressions in eq. (48)

reveals that o and Ty correspond precisely to those

(o]
nn? “zz?

obtained by Sih [10]% for a rigid line inclusion under the
conditions of plane strain. In fact, the stress component

is equal to v(o_ +o__), a condition which is well known

%t nn 2z

in the analysis of plane strain problems. The shear stresses

and can be identified with the two-dimensional problem

Yt tz
of a line inclusion subjected to longitudinal or out-of-plane
shear loads. Hence, the stress state around a plane inclusion
in three-dimensions is locally one of plane strain combined

with longitudinal shear.

8The stresses o and 1t given by eq. (48) in [10]

rr* %g0° re

should be transformed into rectangular components Tuxd Tyyd
Txy in accordance with yy
O%x * Tyy T pr T %g0
’ _ =218 .
cyy o s + 21Txy = e (Jee-orr + 21Tr8)
For « = 3-4v, the functional forms of o T correspond

) )
to o in this paper, respect%ﬁé]yyy Xy

nn® %zz* "nz
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3 (3 = Ny 2 3) will

occur simultaneously over the inclusion border. They may be

In general, the three parameters k

interpretated as a measure of the elevation of stresses due
to the presence of thin rigid inclusions embedded in elastic

solids. From eq. (48), the formulas

1 :
ki = 1im V/2r (o0_.)
17 oY 227420

=~
I

1 ;
—=— Tim 2r (rnz)

2 T-2v 150 5=0 (49)
k3 = 1im 2Zr (th)

r-0 8=0

are obtained. Eq. (49) may be applied to evaluate kj for the
boundary-value problems solved earlier. Following the work

of Kassir and Sih [9], it is found that
(1) Triaxial Tension.

(1-v)(oy*op)-2vay b/2 o
ki = % Rt ER] 50 @F§infe * bAcoste)

1/4
k, = ko, = 0 (50)

(2) Parallel Displacement.

Zuak2u0 b 1/2 -
1~ T T(3-8v)kZ+TJK(k)-E(k) b= (a2sin?g

+ b‘?coszqﬂ"w4 cos ¢, k, =0
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4u(1-v)ak?u, a .
o [(3-4v)kZ+T1]K(k)-E(k) (E) (a?sin?y
+ b2cos?e)” /% sin o (51)
(3) Rigid Sheet.
2bk210 b 1/2 ki
Ky = * (3-89 KZ=K"ZTE(K)*K "ZK(K) ()  (a?sin®y
+ b2cos2¢)” 174 cos s, k, = 0
(3-4v)ak210 b | 744 .
k3 ) [(3“4v)k3-k'Z]E(k){ETTK(k) (E) (a S1n<¢
+ b2cos?¢)” 178 sin o (52)
(4) Axial Displacement
i a 1% Pl 42
ky = 05 ky = - T3TF9)K(K) (5) (a®sin®y
+ b2cos2¢) " ]/4, ky = 0 (53)

It is interesting to note that kj are not constants but func-
tions of position. Eq. (50) is associated with the local dis-
placement shown in Fig. 1(a) while eq. (53) with Fig. 1(b).
The displacement modes pertaining to the results in eqs. (51)
and (52) are more complicated. For 0 < ¢ < %, the inclusion
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border experiences a combination of the movements illustrated
in Figs. 1(a) and 1(c). The parameters k; and kg attain their

maximum values at ¢ = 0 and ¢ = %, respectively.

For problems involving all three parameters kj (3 & Mg 2
3), it is possible to postulate a criterion of failure for

rigid inlcusions in the form
fcr = f(k], k2, k3)

which states that failure of the material surrounding the in-
clusion occurs when the combination of k], k2, and k3 attains

some critical value.
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